|
基于SE-CNN的服务机器人运动系统云端故障诊断方法
缪昭明, 袁宪锋, 张晖, 颜亮, 周风余, 郭仁和, 汪佳宇
机器人,
2021, 43(3):
321-330.
DOI: 10.13973/j.cnki.robot.200295
研究并设计了一种基于服务机器人云平台的故障诊断系统.传统算法只关注服务机器人某一时刻的状态数据,所提取的特征信息有限,因而难以较好地完成故障诊断任务.在这种背景下,提出了基于时间序列关联特征的故障诊断方法.首先,对采集的服务机器人数据进行归一化和后向差分预处理,消除数据量纲并获取数据变化特征;其次,利用滑动窗口来生成时间序列样本,保证每个样本包含足够的特征信息;然后,应用卷积神经网络(CNN)挖掘时间序列的关联特征,并在网络中引入通道注意力网络(squeeze-and-excitation network,SENet),构建了一种SE-CNN模型.该模型能够自适应调整特征通道的重要程度,聚焦于更有效的特征通道,从而提高了诊断精度.对比实验与实际场景下的综合测试证明了本文提出的故障自诊断方法的可行性和有效性.
参考文献 |
相关文章 |
多维度评价
|
|