[1] 李晔,刘建成,徐玉如,等.带翼水下机器人运动控制的动力学建模[J].机器人,2005,27(2):128-131.Li Y, Liu J C, Xu Y R, et al. Dynamics modeling for motion control of underwater vehicle with wing[J]. Robot, 2005, 27(2): 128-131.[2] 袁伟杰,刘贵杰,朱绍锋.基于遗传算法的自治水下机器人水动力参数辨识方法[J].机械工程学报,2010,46(11):96-100.Yuan W J, Liu G J, Zhu S F. Identification method of hydrodynamic parameters of autonomous underwater vehicle based on genetic algorithm[J]. Chinese Journal of Mechanical Engineering, 2010, 46(11): 96-100.[3] Marco D B, Martins A, Healey A J. Surge motion parameter identification for the NPS Phoenix AUV[C]//International Advanced Robotics Program. Lafayette, USA: IARP, 1998.[4] de Barros E A, Pascoal A, de Sa E. Investigation of a method for predicting AUV derivatives[J]. Ocean Engineering, 2008, 35(16): 1627-1636. [5] Peng Y, Han J D. Tracking control of unmanned trimaran surface vehicle: Using adaptive unscented Kalman filter to estimate the uncertain parameters[C]//IEEE International Conference on Robotics, Automation and Mechatronics. Piscataway, USA: IEEE, 2008: 901-906.[6] 潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224.Pan T H, Xue Z K, Li S Y. An online multi-model identification algorithm based on subtractive clustering[J]. Acta Automatica Sinica, 2009, 35(2): 220-224.[7] 段朝阳,张艳,邵雷,等.基于多模型在线辨识的滑模变结构控制[J].上海交通大学学报,2011,45(3):403-407.Duan C Y, Zhang Y, Shao L, et al. Sliding mode variable structure control based on multi-model on-line identification[J]. Journal of Shanghai Jiaotong University, 2011, 45(3): 403-407.[8] 张铭钧,胡明茂,徐建安.基于稳态自适应技术的水下机器人系统在线辨识[J].系统仿真学报,2008,20(18):5006-5009,5014.Zhang M J, Hu M M, Xu J A. Online identification of autonomous underwater vehicle based on stable adaptive technique[J]. Journal of System Simulation, 2008, 20(18): 5006-5009,5014.[9] Marani G, Choi S K, Yuh J. Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention[J]. Intelligent Service Robotics, 2010, 3(3): 175-182. [10] Petrich J, Stilwell D J. Model simplification for AUV pitch-axis control design[J]. Ocean Engineering, 2010, 37(7): 638-651. [11] 金鸿章,高妍南,周生彬.基于能量优化的海洋机器人航向与横摇自适应终端滑模综合控制[J].机械工程学报,2011,47(15):37-43.Jin H Z, Gao Y N, Zhou S B. Adaptive terminal-sliding-mode combination control for heading and rolling of marine robot based on energy optimization[J]. Chinese Journal of Mechanical Engineering, 2011, 47(15): 37-43.[12] Smallwood D A. Advances in dynamical modeling and control of underwater robotic vehicles[D]. Baltimore, USA: Johns Hopkins University, 2003.[13] 于志刚,沈永良,李桂英.基于在线优化的线性系统状态反馈鲁棒镇定[J].控制与决策,2011,26(1):75-79.Yu Z G, Shen Y L, Li G Y. State feedback robust stabilization for linear system based on on-line optimization[J]. Control and Decision, 2011, 26(1): 75-79.[14] 段纳,王璐,赵丛然.一类具有积分输入到状态稳定未建模动态的高阶非线性系统的状态反馈调节[J].控制理论与应用,2011,28(5):639-644.Duan N, Wang L, Zhao C R. State-feedback regulation for a class of higher-order nonlinear systems with integral input-to-state stability unmodeled dynamics[J]. Control Theory and Applications, 2011, 28(5): 639-644.[15] Fossen T I. Guidance and control of ocean vehicles[M]. Chichester, UK: John Wiley & Sons, 1994: 21-56.[16] 蒋新松,封锡盛,王棣堂.水下机器人[M].沈阳:辽宁科学技术出版社,2000:150-183.Jiang X S, Feng X S, Wang D T. Underwater vehicles[M]. Shenyang: Liaoning Publisher of Science and Technology, 2000: 150-183.[17] Naik M S, Singh S N. State-dependent Riccati equation-based robust dive plane control of AUV with control constraints[j]. Ocean Engineering, 2007, 37(11/12): 1711-1723.[18] Khalil H K. 非线性系统[M].3版.朱义胜,董辉,李作洲,等,译.北京:电子工业出版社,2005:89-93.Khalil H K. Nonlinear system[M]. 3rd ed. Zhu Y S, Dong H, Li Z Z, et al, trans. Beijing: Publishing House of Electronics Industry, 2005: 89-93.[19] 林相泽,邹云.线性切换系统的积分不变性原理[J].自动化学报,2011,37(2):196-204.Lin X Z, Zou Y. An integral invariance principle for switched linear systems[J]. Acta Automatica Sinica, 2011, 37(2): 196-204.[20] Koo M S, Choi H L, Lim J T. Universal control of nonlinear systems with unknown nonlinearity and growth rate by adaptive output feedback[J]. Automatica, 2011, 47(10): 2211-2217. [21] Liberzon D. Switching in systems and control[M]. Boston, USA: Birkhäuser, 2003: 73-124. |