朱博, 戴先中, 李新德, 杨伟, 陈芳园. 基于“原型”的机器人开放式室内场所感知实验研究[J]. 机器人, 2013, 35(4): 491-499,512.DOI: 10.3724/SP.J.1218.2013.00491.
ZHU Bo, DAI Xianzhong, LI Xinde, YANG Wei, CHEN Fangyuan. Experimental Study on Open Interior-Places Perception of Robot Based on “Prototype”. ROBOT, 2013, 35(4): 491-499,512. DOI: 10.3724/SP.J.1218.2013.00491.
A place-perception experimental platform is proposed on the basis of the prototype based place perception algorithm. In the hardware system, a binocular rig is used as environment perception sensor, and CPU (central processing unit) and GPU (graphic processing unit) coordinated computing unit is used to process multiple tasks, complex logic, intensive data, and so on. The software system is constructed based on Microsoft Robotics Developer Studio platform. Binocular vision service and place perception service are two core services in it. The former is fit for clustered indoor environment, and realizes object recognition and pose estimation simultaneously in wide viewing angle by using RANSAC (RANdom SAmple Consensus), ASIFT (affine scale-invariant feature transform) -GPU and other algorithms. The latter realizes place categorization and region perception and constructs 2D semantic map based on the results of binocular vision and the existing place perception algorithm. The experiments are conducted in a real interior environment in which no artificial label is used. The experiment results show that the robot can robustly perceive open places in its action space online based on the experimental platform, and realizability, effectiveness and practicability of the existing place perception algorithm are verified to a certain extent.
[1] Vasudevan S, Siegwart R. Bayesian space conceptualization and place classification for semantic maps in mobile robotics[J]. Robotics and Autonomous Systems, 2008, 56(6): 522-537. [2] Pronobis A, Jensfelt P. Hierarchical multi-modal place categorization[C/OL]//5th European Conference on Mobile Robots. [2012-08-25]. http://cogx.eu/data/cogx/publications/ PronobisECMR2011.pdf[3] Swadzba A, Wachsmuth S. Indoor scene classification using combined 3D and gist features[C]//The 10th Asian Conference on Computer Vision (ACCV 2010). Berlin, Germany: Springer-Verlag, 2011: 201-215.[4] Pronobis A. Semantic mapping with mobile robots[D]. Stockholm, Sweden: KTH Royal Institute of Technology, 2011.[5] Pronobis A, Sjoo K, Aydemir A, et al. A framework for robust cognitive spatial mapping[C]//14th International Conference on Advanced Robotics. Piscataway, NJ, USA: IEEE, 2009: 1-8.[6] Pronobis A, Martinez Mozos O, Caputo B, et al. Multi-modal semantic place classification[J]. International Journal of Robotics Research, 2010, 29(2/3): 298-320.[7] Zivkovic Z, Booij O, Krose B. From images to rooms[J]. Robotics and Autonomous Systems, 2007, 55(5): 411-418. [8] Valgren C, Lilienthal A. Incremental spectral clustering and seasons: Appearance-based localization in outdoor environments [C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 1856-1861.[9] 吴皓,田国会,陈西博,等.基于机器人服务任务导向的室内未知环境地图构建[J].机器人,2010,32(2):196-203. Wu H, Tian G H, Chen X B, et al. Map building of indoor unknown environment based on robot service mission direction[J]. Robot, 2010, 32(2): 196-203.[10] Klenk M, Hawes N, Lockwood K. Representing and reasoning about spatial regions defined by context[C/OL]//2011 AAAI Fall Symposium. El Segundo, CA, USA: AI Access Foundation, 2011: 154-161. [2012-08-25]. https://www.aaai.org/ocs/ index.php/FSS/FSS11/paper/download/4143/4543.[11] Hawes N, Klenk M, Lockwood K, et al. Towards a cognitive system that can recognize spatial regions based on context[C/OL]//26th AAAI Conference on Artificial Intelligence. El Segundo, CA, USA: AI Access Foundation, 2012: 200-206. [2012-08-25]. http://www.aaai.org/ocs/index.php/AAAI/ AAAI12/paper/download/5061/5139.[12] 朱博,戴先中,李新德.基于“原型”的机器人开放式室内场所感知算法[J].模式识别与人工智能,2012,25(1):1-10. Zhu B, Dai X Z, Li X D. Open interior-places perception algorithm of robot based on prototype[J]. Pattern Recognition and Artificial Intelligence. 2012, 25(1): 1-10. [13] 朱博,戴先中,李新德.一种基于物联网技术的场所感知系统初探[J].计算机科学,2012,39(2):216-221.Zhu B, Dai X Z, Li X D. Preliminary study on a kind of placeperception system based on IOT technology[J]. Computer Science,2012, 39(2): 216-221.[14] Morel J-M, Yu G S. ASIFT: A new framework for fully affineinvariant image comparison[J]. SIAM Journal on Imaging Sciences,2009, 2(2): 438-469. [15] MIT Media Lab. Lifelong Kindergarten[OL]. [2012-08-25].http://llk.media.mit.edu/projects.php?id=135.[16] Microsoft Robotics. Microsoft Robotics Developer Studio[OL].[2012-08-25]. http://www.microsoft.com/robotics/#About.[17] Bodurov V. Using Microsoft Robotics Developer Studio withLego Mindstorms NXT Robot[OL]. (2010-08-10) [2012-08-25]. http://www.simple-talk.com/dotnet/.net-framework/usingmicrosoft-robotics-developer-studio-with-lego-mindstormsnxt-robot/.[18] Fischler M A, Bolles R C. Random sample consensus: Aparadigm for model fitting with applications to image analysisand automated cartography[J]. Communications of the ACM,1981, 24(6): 381-395. [19] Zhu B, Dai X Z, Li X D, et al. Place concept teaching throughsketch map for robot place perception based on prototypemechanism[C]//6th International Conference on Intelligent Systemsand Knowledge Engineering: vol.124. Berlin, Germany:Springer-Verlag, 2011: 79-89.