Subsectional Adaptive Monte Carlo Localization for Humanoid Soccer Robot
HONG Wei1, ZHOU Changjiu2, TIAN Yantao1
1. College of Communication Engineering, Jilin University, Changchun 130025, China;
2. Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, 139651, Singapore
A subsectional adaptive Monte Carlo localization method is presented to overcome some shortcomings in regular Monte Carlo localization, such as particle degeneracy and the kidnap problem. Firstly, two feature variables are proposed to describe distribution of particle set and its difference from the real posture. Secondly, four states (global localization, local localization, local tracking and fault-tolerant localization) are identified by the combination of the variable values during the whole process of localization, and different strategies are designed for each state in order to adjust parameters and resampling rules adaptively. Finally, the results of physical and simulative experiments based on adult-size humanoid soccer robot system show that the proposed method is effective in achieving an accurate and real-time localization. Furthermore, this method can enhance the robustness of localization system by solving the kidnap problem efficiently.
[1] Dellaert F, Fox D, Burgard W, et al. Monte Carlo localization for mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1999: 1322-1328.[2] Rofer T, Jungel M. Vision-based fast and reactive Monte-Carlo localization[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 856-861.[3] Thompson S, Kagami S. Humanoid robot localisation using stereo vision[C]//IEEE-RAS International Conference on Humanoid Robotics. Piscataway, NJ, USA: IEEE, 2005: 19-25.[4] 张霄汉,陈小平,李嘉玲,等.一种基于视觉的步行机器人Monte Carlo自定位系统[J].机器人,2006,28(4): 415-421.Zhang X H, Chen X P, Li J L, et al. A vision-based Monte Carlo self-localization system on a walking robot[J]. Robot, 2006, 28(4): 415-421.[5] Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence, 2001, 128(1/2): 99-141.[6] 方正,佟国锋,徐心和.一种鲁棒高效的移动机器人定位方法[J].自动化学报,2007,33(1): 48-53.Fang Z, Tong G F, Xu X H. A robust and efficient algorithm for mobile robot localization[J]. Acta Automatica Sinica, 2007, 33(1): 48-53.[7] Gasparri A, Panzieri S, Pascucci F, et al. Monte Carlo filter in mobile robotics localization: A clustered evolutionary point of view[J]. Journal of Intelligent and Robotic Systems, 2006, 47(2): 155-174. [8] 张恒,樊晓平,翟志华.基于多假设跟踪的移动机器人自适应蒙特卡洛定位研究[J].自动化学报,2007,33(9): 941- 946.Zhang H, Fan X P, Zhai Z H. Mobile robot adaptive Monte Carlo localization based on multiple hypothesis tracking[J]. Acta Automatica Sinica, 2007, 33(9): 941-946.[9] Thrun S, Fox D, Burgard W. Monte Carlo localization with mixture proposal distribution[C]//17th National Conference on Artificial Intelligence and 12th Conference on Innovative Application of Artificial Intelligence. Cambridge, MA, USA: MIT Press, 2000: 859-865.[10] 宋宇,孙富春,李庆玲.移动机器人的改进无迹粒子滤波蒙特卡洛定位算法[J].自动化学报,2010,36(6): 851-857.Song Y, Sun F C, Li Q L. Mobile robot Monte Carlo localization based on improved unscented particle filter[J]. Acta Automatica Sinica, 2010, 36(6): 851-857.[11] Milstein A, Sanchez J N, Williamson E T. Robust global localization using clustered particle filtering[C]//18th National Conference on Artificial Intelligence and 14th Innovative Applications of Artificial Intelligence Conference. Cambridge, MA, USA: MIT Press, 2002: 581-586.[12] Fox D. Adapting the sample size in particle filters through KLD-sampling[J]. International Journal of Robotics Research, 2003, 22(12): 985-1103. [13] 武二永,项志宇,刘济林.鲁棒的机器人蒙特卡洛定位算法[J].自动化学报,2008,34(8): 907-911.Wu E Y, Xiang Z Y, Liu J L. Robust robot Monte Carlo localization[J]. Acta Automatica Sinica, 2008, 34(8): 907-911.[14] Hu L Y, Zhou C J. Gait generation and optimization using theestimation of distribution algorithm for teensize humanoid soccerrobot RESr-1[J]. International Journal of Humanoid Robotics, 2008,5(3): 437-456. [15] RoboCup soccer humanoid league rules and setup for the 2010competition in Singapore[EB/OL]. [2009-12-20]. http://www.tzi.de/humanoid/pub/Website/Downloads/Humanoid League Rules2010.pdf.