Research Progresses of Robots with Active Deformable Materials
SU Xiaoyu1, PAN Quan1, WANG Hongwei2, REN Zhongjing3,4
1. Key Laboratory of Information Fusion Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China; 2. National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China; 3. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China; 4. Active Nanomaterial & Devices Lab, Stevens Institute of Technology, Hoboken 07030, USA
苏笑宇, 潘泉, 王宏伟, 任仲靖. 主动变形材料机器人技术研究进展[J]. 机器人, 2021, 43(1): 112-128.DOI: 10.13973/j.cnki.robot.200118.
SU Xiaoyu, PAN Quan, WANG Hongwei, REN Zhongjing. Research Progresses of Robots with Active Deformable Materials. ROBOT, 2021, 43(1): 112-128. DOI: 10.13973/j.cnki.robot.200118.
Abstract:Recent research progresses of the cross-disciplines between robots and active deformable materials at home and abroad are introduced. The robots with active deformable materials are classified into three kinds by their deformability, i.e. telescopic, curving and twisting robots. Besides, the applications of representative additive manufacturing technologies to the robots with active deformable materials are illustrated, including 3D printing, doping and microfabrication. Finally, the unsolved research difficulties and the predicted future trends in this field are given.
[1] 戴先中. 21世纪非制造业自动化的发展与特种机器人研究思考[J].自动化学报, 2002, 28(S1):96-102. Dai X Z. Non-manufacturing automation in 21-century and related development of advanced robot research[J]. Acta Automatica Sinica, 2002, 28(S1):96-102. [2] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the roughterrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2):10822-10825. [3] Fallon M, Kuindersma S, Karumanchi S, et al. An architecture for online affordance-based perception and whole-body planning[J]. Journal of Field Robotics, 2015, 32(2):229-254. [4] DeDonato M, Dimitrov V, Du R X, et al. Human-in-the-loop control of a humanoid robot for disaster response:A report from the DARPA robotics challenge trials[J]. Journal of Field Robotics, 2015, 32(2):275-292. [5] 张大松,熊蓉,吴俊,等. 基于分解动量的仿人机器人手臂高速运动实时平衡控制[J].控制理论与应用, 2013, 30(3):316-323. Zhang D S, Xiong R, Wu J, et al. Resolved-momentum-based real-time balance control for high-speed arm manipulation of humanoid robot[J]. Control Theory & Applications, 2013, 30(3):316-323. [6] Xiong R, Sun Y C, Zhu Q G, et al. Impedance control and its effects on a humanoid robot playing table tennis[J]. International Journal of Advanced Robotic Systems, 2012, 9. DOI:10.5772/51924. [7] 章逸丰,熊蓉. 乒乓球机器人的视觉伺服系统[J].中国科学(信息科学), 2012, 42(9):1115-1129. Zhang Y F, Xiong R. Visual servo system of Ping-Pang robot[J]. Science in China (Information Sciences), 2012, 42(9):11151129. [8] 汤卿,熊蓉,褚健. 基于最优化线性搜索的稳定步态规划方法[J].控制理论与应用, 2008, 25(4):661-664,676. Tang Q, Xiong R, Chu J. Stable biped walking based on linear search optimization algorithm[J]. Control Theory & Applications, 2008, 25(4):661-664,676. [9] Zhu Q G, Mao Y C, Xiong R, et al. Adaptive torque and position control for a legged robot based on a series elastic actuator[J]. International Journal of Advanced Robotic Systems, 2016, 13(1). DOI:10.5772/62204. [10] 王树国,付宜利. 我国特种机器人发展战略思考[J].自动化学报, 2002, 28(S1):70-76. Wang S G, Fu Y L. On advanced robot development strategy of China[J]. Acta Automatica Sinica, 2002, 28(S1):70-76. [11] 林焰,衣正尧,李玉平,等. 大型船用坞内外板涂装机器人[J].机器人, 2018, 40(1):115-128. Lin Y, Yi Z Y, Li Y P, et al. Large spraying robots for ship shell plate in dock[J]. Robot, 2018, 40(1):115-128. [12] 张永顺. 国外微型管内机器人的发展[J].机器人, 2000, 22(6):506-513. Zhang Y S. Development of micro-in-pipe mobile robot abroad[J]. Robot, 2000, 22(6):506-513. [13] 钱晋武,沈林勇,程维明,等. 微小管道涡流检测机器人系统研究[J].机器人, 2001, 23(2):127-131. Qian J W, Shen L Y, Cheng W M, et al. A micro robotic system for pipeline inspection using eddy-current technique[J]. Robot, 2001, 23(2):127-131. [14] 解旭辉,王宏刚,徐从启. 微小管道机器人机构设计及动力学分析[J].国防科技大学学报, 2007, 29(6):98-101. Xie X H, Wang H G, Xu C Q. Mechanism design and dynamic analysis on micro-pipe robot[J]. Journal of National University of Defense Technology. 2007, 29(6):98-101. [15] 段星光,高亮,李建玺,等. 颅颌面外科手术机器人空间配准及实验[J].机器人, 2018, 40(1):64-71,80. Duan X G, Gao L, Li J X, et al. Spatial registration of a craniomaxillofacial surgery robot and its experiments[J]. Robot, 2018, 40(1):64-71,80. [16] Slatkin A B, Burdick J, Grundfest W. The development of a robotic endoscope[C]//International Symposium on Experimental Robotics IV. Berlin, Germany:Springer-Verlag, 1995:161169. [17] 王天然.机器人技术的发展[J].机器人, 2017, 39(4):385-386. Wang T R. Development of the robotics[J]. Robot, 2017, 39(4):385-386. [18] 文力,王贺升.软体机器人研究展望:结构、驱动与控制[J].机器人, 2018, 40(5):577. Wen L, Wang H S. Perspective of soft robotics:Structure, actuation, and control[J]. Robot, 2018, 40(5):577. [19] Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1):75-87. [20] Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences, 2011, 108(51):20400-20403. [21] Li S G, Vogt D M, Rus D, et al. Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National Academy of Sciences, 2017, 114(50):13132-13137. [22] Yan J H, Zhang X B, Xu B B, et al. A new spiral-type inflatable pure torsional soft actuator[J]. Soft Robotics, 2018, 5(5):527-540. [23] Kurumaya S, Phillips B T, Becker K P, et al. A modular soft robotic wrist for underwater manipulation[J]. Soft Robotics, 2018, 5(4):399-409. [24] Bhattacharya K, James R D. The material is the machine[J]. Science, 2005, 307(5706):53-54. [25] McEvoy M A, Correll N. Materials that couple sensing, actuation, computation, and communication[J]. Science, 2015, 347(6228). DOI:10.1126/science.1261689. [26] Yang G Z, Fischer P, Nelson B. New materials for nextgeneration robots[J]. Science Robotics, 2017, 2(10). DOI:10. 1126/scirobotics.aap9294. [27] Hughes D, Heckman C, Correll N. Materials that make robots smart[J]. International Journal of Robotics Research, 2019, 38(12-13):1338-1351. [28] Shukla A, Karki H. Application of robotics in offshore oil and gas industry-A review. Part II[J]. Robotics and Autonomous Systems, 2015, 75:508-524. [29] Deepak B B V L, Bahubalendruni M V A R, Biswal B B, et al. Development of in-pipe robots for inspection and cleaning tasks:Survey, classification and comparison[J]. International Journal of Intelligent Unmanned Systems, 2016, 4(3):182210. [30] Ismail I N, Anuar A, Sahari K S M, et al. Development of inpipe inspection robot:A review[C]//IEEE Conference on Sustainable Utilization and Development in Engineering and Technology. Piscataway, USA:IEEE, 2012:310-315. [31] Shao L, Wang Y, Guo B Z, et al. A review over state of the art of in-pipe robot[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2015:2180-2185. [32] Roslin N S, Anuar A, Jalal M F A, et al. A review:Hybrid locomotion of in-pipe inspection robot[J]. Procedia Engineering, 2012, 41:1456-1462. [33] Saga N, Nakamura T. Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm[J]. Smart Materials and Structures, 2004, 13(3):566-569. [34] Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56:1078-1113. [35] Ölander A. An electrochemical investigation of solid cadmiumgold alloys[J]. Journal of the American Chemical Society, 1932, 54(10):3819-3833. [36] Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34(5):14751477. [37] Kauffman G B, Mayo I. The story of nitinol:The serendipitous discovery of the memory metal and its applications[J]. Chemical Educator, 1997, 2:1-21. [38] Liu Y J, Du H Y, Liu L W, et al. Shape memory polymers and their composites in aerospace applications:A review[J]. Smart Materials and Structures, 2014, 23(2). DOI:10.1088/09641726/23/2/023001. [39] El Feninat F, Laroche G, Fiset M, et al. Shape memory materials for biomedical applications[J]. Advanced Engineering Materials, 2002, 4(3):91-104. [40] Seok S, Onal C D, Cho K J, et al. Meshworm:A peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):14851497. [41] Park C H, Son Y S. Evaluation of artificial muscle using SMA spring bundle with high load capacity and power density[C]//14th International Conference on Ubiquitous Robots and Ambient Intelligence. Piscataway, USA:IEEE, 2017:81-82. [42] Bar-Cohen Y, Xue T, Shahinpoor M, et al. Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand[C]//3rd ASCE Specialty Conference on Robotics for Challenging Environments. Reston, USA:American Society of Civil Engineers, 1998:15-21. [43] He Q G, Wang Z J, Wang Y, et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation[J]. Science Advances, 2019, 5(10). DOI:10.1126/sciadv.aax5746. [44] Li H, Go G, Ko S Y, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery[J]. Smart Materials and Structures, 2016, 25(2). DOI:10.1088/0964-1726/25/2/027001. [45] Behl M, Kratz K, Zotzmann J, et al. Reversible bidirectional shape-memory polymers[J]. Advanced Materials, 2013, 25(32):4466-4469. [46] Qiu Y, Zhang E, Plamthottam R, et al. Dielectric elastomer artificial muscle:Materials innovations and device explorations[J]. Accounts of Chemical Research, 2019:52(2):316-325. [47] Plante J S, Dubowsky S. On the properties of dielectric elastomer actuators and their design implications[J]. Smart Materials and Structures, 2007, 16(2):227-236. [48] Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1):10-36. [49] Hu W, Zhang S N, Niu X F, et al. An aluminum nanoparticleacrylate copolymer nanocomposite as a dielectric elastomer with a high dielectric constant[J]. Journal of Materials Chemistry C, 2014, 2(9):1658-1666. [50] Wang L Y, Yang Y, Chen Y H, et al. Controllable and reversible tuning of material rigidity for robot applications[J]. Materials Today, 2018, 21(5):563-576. [51] Yu Y L. A light-fuelled wave machine[J]. Nature, 2017, 546(7660):604-606. [52] White T J, Broer D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nature Materials, 2015, 14(11):1087-1098. [53] Yu Z L, Tantakitti F, Yu T, et al. Simultaneous covalent and noncovalent hybrid polymerizations[J]. Science, 2016, 351(6272):497-502. [54] Li C, Iscen A, Sai H, et al. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation[J]. Nature Materials, 2020, 19(8):900-909. [55] AbuZaiter A, Nafea M, Faudzi A A M, et al. Thermomechanical behavior of bulk NiTi shape-memory-alloy microactuators based on bimorph actuation[J]. Microsystem Technologies, 2016, 22(8):2125-2131. [56] Wang Y Z, Gupta U, Parulekar N, et al. A soft gripper of fast speed and low energy consumption[J]. Science China:Technology Science, 2019, 62(1):31-38. [57] Ghosh B, Jain R K, Majumder S, et al. Experimental performance evaluation of smart bimorph piezoelectric actuator and its application in micro robotics[J]. Microsystem Technologies, 2017, 23(10):4619-4635. [58] Xiao P S, Yi N B, Zhang T F, et al. Construction of a fish-like robot based on high performance graphene/PVDF bimorph actuation materials[J]. Advanced Science, 2016, 3(6). DOI:10. 1002/advs.201500438. [59] Li M X, Guo S X, Guo J, et al. Development of a biomimetic underwater microrobot for a father-son robot system[J]. Microsystem Technologies, 2017, 23(4):849-861. [60] Peraza-Hernandez E A, Hartl D J, Malak R J Jr, et al. Origamiinspired active structures:A synthesis and review[J]. Smart Materials and Structures, 2014, 23(9). DOI:10.1088/0964- 1726/23/9/094001. [61] Haghpanah B, Salari-Sharif L, Pourrajab P, et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials, 2016, 28(36):7915-7920. [62] Zhakypov Z, Paik J. Design methodology for constructing multimaterial origami robots and machines[J]. IEEE Transactions on Robotics, 2018, 34(1):151-165. [63] Mueller S, Kruck B, Baudisch P. LaserOrigami:Laser-cutting 3D objects[C]//SIGCHI Conference on Human Factors in Computing Systems. New York, USA:ACM, 2013:2585-2592. [64] Ahn B Y, Shoji D, Hansen C J, et al. Printed origami structures[J]. Advanced Materials, 2010, 22(20):2251-2254. [65] Shigemune H, Maeda S, Hara Y, et al. Kirigami robot:Making paper robot using desktop cutting plotter and inkjet printer[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:1091-1096. [66] Gao W, Ramani K, Cipra R, et al. Kinetogami:A reconfigurable, combinatorial, and printable sheet folding[J]. Journal of Mechanical Design, 2013, 135(11). DOI:10.1115/1.4025506. [67] Gray S, Zeichner N J, Yim M, et al. A simulator for origamiinspired self-reconfigurable robots[C]//5th International Meeting of Origami Science, Mathematics, and Education. Boca Raton, USA:CRC Press, 2011:323-333. [68] Paik J. Algorithm for architectural origami[J]. Nature, 2017, 541(7637):296-297. [69] Overvelde J T B, Weaver J C, Hoberman C, et al. Rational design of reconfigurable prismatic architected materials[J]. Nature, 2017, 541(7637):347-352. [70] Silverberg J L, Evans A A, McLeod L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197):647-650. [71] Waitukaitis S, Menaut R, Chen B G G, et al. Design of multistable metasheets[DB/OL]. (2014-09-09)[2020-04-01]. https://arxiv.org/abs/1408.1607. [72] Lagoudas D C. Shape memory alloys:Modeling and engineering applications[M]. Boston, USA:Springer, 2008. [73] Li Q. Intelligent stimuli-responsive materials:From welldefined nanostructures to applications[M]. Hoboken, USA:John Wiley & Sons, 2013. [74] Ahmed S, Lauff C, Crivaro A, et al. Multi-field responsive origami structures:Preliminary modeling and experiments[C]//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, USA:ASME, 2014. DOI:10.1115/DETC2013-12405. [75] von Lockette P, Sheridan R. Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites[C]//ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York, USA:ASME, 2014. DOI:10. 1115/SMASIS2013-3222. [76] Peraza-Hernandez E A, Hartl D J, Malak R J Jr. Design and numerical analysis of an SMA mesh-based self-folding sheet[J]. Smart Materials and Structures, 2013, 22(9). DOI:10.1088/0964-1726/22/9/094008. [77] Liu Y, Boyles J K, Genzer J, et al. Self-folding of polymer sheets using local light absorption[J]. Soft Matter, 2012, 8(6):1764- 1769. [78] Laflin K E, Morris C J, Muqeen T, et al. Laser triggered sequential folding of microstructures[J]. Applied Physics Letters, 2012, 101(13). DOI:10.1063/1.4754607. [79] Ge Q, Dunn C K, Qi H J, et al. Active origami by 4D printing[J]. Smart Materials and Structures, 2014, 23(9). DOI:10.1088/0964-1726/23/9/094007. [80] Onal C D, Wood R J, Rus D. An origami-inspired approach to worm robots[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(2):430-438. [81] Ahmed S, McGough K, Ounaies Z, et al. Origami-inspired folding and unfolding of structures:Fundamental investigations of dielectric elastomer-based active materials[C]//ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York, USA:ASME, 2014. DOI:10.1115/SMASIS2013-3330. [82] Vender Hoff E, Jeong D, Lee K. OrigamiBot-I:A threadactuated origami robot for manipulation and locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:1421-1426. [83] Suzuki, K, Yamada H, Miura H, et al. Self-assembly of three dimensional micro mechanisms using thermal shrinkage of polyimide[J]. Microsystem Technologies, 2007, 13(8-10):1047- 1053. [84] Noh M, Kim S W, An S, et al. Flea-inspired catapult mechanism for miniature jumping robots[J]. IEEE Transactions on Robotics, 2012, 28(5):1007-1018. [85] Kim H J, Song S H, Ahn S H. A turtle-like swimming robot using a smart soft composite (SSC) structure[J]. Smart Materials and Structures, 2013, 22(1). DOI:10.1088/0964-1726/22/1/014007. [86] Song S H, Lee J Y, Rodrigue H, et al. 35 Hz shape memory alloy actuator with bending-twisting mode[J]. Scientific Reports, 2016, 6(1). DOI:10.1038/srep21118. [87] Sehr H, Evans A G R, Brunnschweiler A, et al. Fabrication and test of thermal vertical bimorph actuators for movement in the wafer plane[J]. Journal of Micromechanics and Microengineering, 2001, 11(4):306-310. [88] Sohi A N, Nieva P M, Khajepour A. Electrothermomechanical modeling of out-of-plane deformation in single-stepped beams actuated by resistive heating[J]. Journal of Micromechanics and Microengineering, 2015, 25(3). DOI:10.1088/0960-1317/25/3/035028. [89] Grinberg I H, Maccabi N, Kassie A, et al. A piezoelectric twisting beam actuator[J]. Journal of Microelectromechanical Systems, 2017, 26(6):1279-1286. [90] Gorissen B, Chishiro T, Shimomura S, et al. Flexible pneumatic twisting actuators and their application to tilting micromirrors[J]. Sensors and Actuators A:Physical, 2014, 216:426-431. [91] Kuo J N, Lee G B, Pan W F, et al. Shape and thermal effects of metal films on stress-induced bending of micromachined bilayer cantilever[J]. Japanese Journal of Applied Physics, Part 1, 2005, 44(5A):3180-3186. [92] Ji Z Y, Yan C Y, Yu B, et al. 3D printing of hydrogel architectures with complex and controllable shape deformation[J]. Advanced Materials Technologies, 2019, 4(4). DOI:10.1002/admt.201800713. [93] Huang H W, Uslu F E, Katsamba P, et al. Adaptive locomotion of artificial microswimmers[J]. Science Advances, 2019, 5(1). DOI:10.1126/sciadv.aau1532. [94] Wang Z J, Li C Y, Zhao X Y, et al. Thermo- and photoresponsive composite hydrogels with programmed deformations[J]. Journal of Materials Chemistry B, 2019, 7(10):1674-1678. [95] Su X Y, Ren Z J, Yan J, et al. Microstructure and twisting ability of an adjusted antisymmetric angle ply laminate[J]. Applied Physics Letters, 2019, 114(21). DOI:10.1063/1.5089809. [96] Tsai C H, Tsai C W, Chang H T, et al. Electrothermallyactuated micromirrors with bimorph actuators-Bending-type and torsion-type[J]. Sensors, 2015, 15(6):14745-14756. [97] Song Y P, Panas R M, Hopkins J B. A review of micromirror arrays[J]. Precision Engineering, 2018, 51:729-761. [98] Wu J, Tang S Y, Fang T, et al. A wheeled robot driven by a liquid-metal droplet[J]. Advanced Materials, 2018, 30(51). DOI:10.1002/adma.201805039. [99] Tang J B, Wang J J, Liu J, et al. Jumping liquid metal droplet in electrolyte triggered by solid metal particles[J]. Applied Physics Letters, 2016, 108(22). DOI:10.1063/1.4953157. [100] Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery[J]. Journal of Materials Chemistry B, 2016, 4(32):5349-5357. [101] Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709):274-279. [102] Xu T Q, Zhang J C, Salehizadeh M, et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions[J]. Science Robotics, 2019, 4(29). DOI:10.1126/scirobotics.aav4494. [103] Cui H C, Hensleigh R, Yao D S, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nature Materials, 2019, 18(3):234-241. [104] Prakash Raju G K S, Ashok Kumar P, Srinivasa Rao K, et al. Design and simulation of cantilever based MEMS bimorph piezoelectric energy harvester[J]. Mechanics, Materials Science & Engineering Journal, 2017, 9(1). DOI:10.2412/mmse. 16.9.490. [105] Pillatsch P, Xiao B L, Shashoua N, et al. Degradation of bimorph piezoelectric bending beams in energy harvesting applications[J]. Smart Materials and Structures, 2017, 26(3). DOI:10.1088/1361-665X/aa5a5d. [106] Guo L, Qin Y. Modeling and analysis of a bimorph piezoelectric cantilever[C]//13th International Conference on Ubiquitous Robots and Ambient Intelligence. Piscataway, USA:IEEE, 2016:248-251. [107] Hosseini, R, Hamedi M. An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester[J]. Microsystem Technologies, 2016, 22:1127-1134. [108] Hines L, Petersen K, Lum G Z, et al. Soft actuators for smallscale robotics[J]. Advanced Materials, 2017, 29(13). DOI:10. 1002/adma.201603483. [109] Khoo Z X, Teoh J E M, Liu Y, et al. 3D printing of smart materials:A review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping, 2015, 10(3):103-122. [110] Su X Y, Ren Z J, Sun H, et al. The submicron fabrication process for a T gate with a flat head[C]//ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. New York, USA:ASME, 2018. DOI:10.1115/DETC2018-85581.