一种自移动空间机械臂末端执行器的研制

韩亮亮, 赫向阳, 杨健, 陈萌

韩亮亮, 赫向阳, 杨健, 陈萌. 一种自移动空间机械臂末端执行器的研制[J]. 机器人, 2016, 38(6): 720-726. DOI: 10.13973/j.cnki.robot.2016.0720
引用本文: 韩亮亮, 赫向阳, 杨健, 陈萌. 一种自移动空间机械臂末端执行器的研制[J]. 机器人, 2016, 38(6): 720-726. DOI: 10.13973/j.cnki.robot.2016.0720
HAN Liangliang, HE Xiangyang, YANG Jian, CHEN Meng. Research on a Novel End-effector for Self-mobile Space Manipulator[J]. ROBOT, 2016, 38(6): 720-726. DOI: 10.13973/j.cnki.robot.2016.0720
Citation: HAN Liangliang, HE Xiangyang, YANG Jian, CHEN Meng. Research on a Novel End-effector for Self-mobile Space Manipulator[J]. ROBOT, 2016, 38(6): 720-726. DOI: 10.13973/j.cnki.robot.2016.0720
韩亮亮, 赫向阳, 杨健, 陈萌. 一种自移动空间机械臂末端执行器的研制[J]. 机器人, 2016, 38(6): 720-726. CSTR: 32165.14.robot.2016.0720
引用本文: 韩亮亮, 赫向阳, 杨健, 陈萌. 一种自移动空间机械臂末端执行器的研制[J]. 机器人, 2016, 38(6): 720-726. CSTR: 32165.14.robot.2016.0720
HAN Liangliang, HE Xiangyang, YANG Jian, CHEN Meng. Research on a Novel End-effector for Self-mobile Space Manipulator[J]. ROBOT, 2016, 38(6): 720-726. CSTR: 32165.14.robot.2016.0720
Citation: HAN Liangliang, HE Xiangyang, YANG Jian, CHEN Meng. Research on a Novel End-effector for Self-mobile Space Manipulator[J]. ROBOT, 2016, 38(6): 720-726. CSTR: 32165.14.robot.2016.0720

一种自移动空间机械臂末端执行器的研制

基金项目: 

载人航天领域预先研究项目(030401)

详细信息
    作者简介:

    韩亮亮(1987-),男,硕士,高级工程师.研究领域:空间机器人机构与控制,空间智能操控系统.

    赫向阳(1991-),男,硕士生.研究领域:机器人机构与控制,空间遥操作.

    通信作者:

    韩亮亮,hllrob@163.com

  • 中图分类号: V423.7

Research on a Novel End-effector for Self-mobile Space Manipulator

  • 摘要: 针对中小型自移动空间机械臂在轨操作和“换位行走”的任务需求,研制了一种小型化、大容差、高刚度可靠连接的末端执行器及其相应的目标适配器.末端执行器采用单一驱动实现捕获、拉紧锁合、解锁和电连接器插拔等多种功能.考虑捕获容差条件及锁合性能要求,对末端执行器的关键机构参数进行设计.通过ADAMS建立虚拟样机,对捕获容差及锁合的功能性能进行验证.最后通过样机实验对末端执行器的功能进行验证,验证了设计的可行性及仿真的准确性.
    Abstract: In order to satisfy the requirements of small and medium self-mobile space manipulator to operate and walk on the space station, a novel end-effector and its grapple interface with characteristics of miniaturization, large-tolerance and high stiffness connection are developed. The end-effector can accomplish multiple functions with a single driving mechanism, such as capturing, rigidization, releasing and electrical connection. Considering the requirement of the tolerance condition and locking performance, the key parameters of the end-effector are designed. In the virtual prototype built in ADAMS, dynamic simulation of capturing and rigidization is analyzed. The function of the end-effector is verified by the prototype experiment, proving the feasibility of the design and the correctness of the simulation.
  • [1]

    Rembala R, Ower C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7/8): 912-920.

    [2]

    Thronson H, Akin D, Grunsfeld J, et al. The evolution and promise of robotic in-space servicing[C]//AIAA SPACE 2009 Conference & Exposition. 2009.

    [3]

    Inaba N, Oda M. Autonomous satellite capture by a space robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2000: 1169-1174.

    [4]

    Xu Y S, Brown H B Jr, Friedman M, et al. Control system of the self-mobile space manipulator[J]. IEEE Transactions on Control Systems Technology, 1994, 2(3): 207-219.

    [5]

    Laryssa P, Lindsay E, Layi O, et al. International Space Station robotics: A comparative study of ERA, JEMRMS and MSS[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk, Netherlands: ESA, 2006.

    [6]

    Hunter D G. The Space Station Freedom special purpose dexterous manipulator (SPDM)[C]//Proceedings of National Telesystems Conference. Piscataway, USA: IEEE, 1991: 371-376.

    [7]

    Rubinger B, Fulford P, Gregoris L, et al. Self-adapting robotic auxiliary hand (SARAH) for SPDM operations on the International Space Station//Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. 2001.

    [8]

    Liu H, Tan Y S, Liu Y W, et al. Development of Chinese large-scale space end-effector[J]. Journal of Central South University of Technology, 2011, 18(3): 600-609.

    [9] 谭益松,刘伊威,刘宏,等.大型空间末端执行器在轨操作运输舱策略[J].机械工程学报,2011,47(3):109-115.

    Tan Y S, Liu Y W, Liu H, et al. Transfer vehicle cargo manipulating strategy in orbit using large-scale space end-effector[J]. Journal of Mechanical Engineering, 2011, 47(3): 109-115.

    [10]

    Zhu Y Y, Gao X H, Xie Z W, et al. Development of a gripper for Chinese space robot[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2006: 1465-1470.

    [11] 洪汝渝.六轴机器人柔顺控制的研究[J].机器人,2000,22(2):143-147.

    Hong R Y. A study of the compliance control of six-DOF robots[J]. Robot, 2000, 22(2): 143-147.

    [12] 裴未迟,李耀刚,李运红.基于虚拟样机技术-ADAMS的冲击力模型[J].河北理工大学学报:自然科学版,2008,30(4):59-63.

    Pei W C, Li Y G, Li Y H. The impact force models based on the virtual prototype-ADAMS[J]. Journal of Hebei Polytechnic University: Natural Science Edition, 2008, 30(4): 59-63.

计量
  • 文章访问数:  0
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18

目录

    /

    返回文章
    返回
    x 关闭 永久关闭